Dynamic formaldehyde standards and their analysis by FTIR – methods and uncertainties

J. Viallon, E. Flores, F. Idrees, P. Moussay, and R.I. Wielgosz

Workshop on VOCs, 14 October 2021, on-line

METP

Bureau

- International des

- Services of the BIPM Chemistry Department
- Dynamic generation of formaldehyde in nitrogen standards
- Analysis by FTIR
- Uncertainties
- Key Comparison CCQM-K90

BIPM Chemistry Department / Coordinating CCQM key comparisons for Air Quality and GreenHouse Gas standards

Dynamic generation of formaldehyde in nitrogen standards

Magnetic Suspension Balance

Flow control & measurement

Generation of formaldehyde in nitrogen mixtures

$$x_{\rm HCHO} = \frac{q_m V_m}{q_v M_{\rm HCHO}} - \frac{M_{\rm H_2O}}{M_{\rm HCHO}} x_{\rm H_2O}$$

Water content measured by CRDS with/without permeation tube in the chamber. Typically 0.5%

$$x_{\rm HCHO} = \frac{3q_m V_m}{q_v M_{\rm (HCHO)_3}} \beta_{\rm conv}$$

Conversion factor measured by FTIR with/without converter. 100% conversion with 0.1% uncertainty.

Purity analysis by FTIR

Fourier Transformed InfraRed spectrometer to quantify (infrared actives) impurities Calibration either with gravimetric standards or using molecular parameters

Paraformaldehyde purity versus age of the permeation tube

First days of permeation from tubes show important amount of co-emitted water

Wait several days to get "stable" permeation rate (mass loss)

Trioxane to Formaldehyde conversion factor by FTIR

Uncertainty of dynamic calibration gases

Uncertainty of dynamic calibration gases

HCHO from paraformaldehyde

Quantity	Value	unit	Standard relative uncertainty
q_m	7000.00	ng min⁻¹	1.21×10 ⁻³
V _m	22.4037	L mol ⁻¹	1.52×10 ⁻⁵
q_{v}	2.5	L min ⁻¹	5.12×10 ⁻⁴
M _{HCHO}	30.026	g mol ⁻¹	6.66×10 ⁻⁵
<i>x</i> _{H2O}	12.00	nmol mol ⁻¹	5.00×10 ⁻¹
<i>M</i> _{H2O}	18.053	g mol ⁻¹	2.77×10 ⁻⁵

Quantity	Value	Standard Uncertainty
<i>x</i> (HCHO)	2.082 μmol mol ⁻¹	0.005 µmol mol ⁻¹

$$x_{\rm HCHO} = \frac{q_m V_m}{q_v M_{\rm HCHO}} - \frac{M_{\rm H_2O}}{M_{\rm HCHO}} x_{\rm H_2O}$$

- $q_m(t)$ modelled by second order polynomial during analysis period
- q_{V} measured by Molbloc calibrated before measurements,
- x_{H2O} measured by CRDS calibrated by NPL, with/without permeation tube in chamber

Uncertainty of dynamic calibration gases

HCHO from trioxane

Quantity	Value	unit	Standard relative uncertainty
q_m	6700.00	ng min⁻¹	9.1×10 ⁻⁴
V _m	22.4037	L mol ⁻¹	1.52×10 ⁻⁵
q_{v}	2.5	L min ⁻¹	5.12×10 ⁻⁴
<i>М</i> (нсно)з	90.078	g mol ⁻¹	2.22×10 ⁻⁵
β	1		1.70×10 ⁻³

Quantity	Value	Standard Uncertainty
<i>x</i> (HCHO)	2.000 μmol mol ⁻¹	0.005 µmol mol ⁻¹

$$x_{\rm HCHO} = \frac{3q_m V_m}{q_v M_{\rm (HCHO)_3}} \beta_{\rm conv}$$

- $q_{\rm m}(t)$ modelled by second order polynomial during analysis period
- q_v measured by Molbloc calibrated before measurements,
- β measured by FTIR previously calibrated with trioxane,

with/without trioxane-formaldehyde converter

CCQM-K90 (2015)

Purpose: Demonstrate the degree of equivalence of national formaldehyde in nitrogen gas standards in support of air quality regulations (CCQM-K90, HCHO in N₂)

List of participants

- Dynamic generation of HCHO/N₂ by permeation & continuous weighing with a **Magnetic Suspension Balance**
- Analysis made by Cavity Ring-Down Spectroscopy and FTIR

Analytical instruments used for comparisons

Allan deviation on HCHO at 2 µmol mol⁻¹

Uncertainty component for analytical instruments

- Allan deviation evaluated before each series
- Standard uncertainty σ_{allan} (300 s)
- FTIR typically 2 nmol mol⁻¹
- CRDS typically 4 nmol mol⁻¹

One cylinder value assignement sequence (~ 300 min)

Each cylinder value assigned with 4 points calibration method

- Bracketing with 4 dynamic values
- Generalised Least-Square fit (B_Least)
- Correlation between dynamic mixtures

Transfer standards in CCQM-K90 (2015)

Total of 14 standards = 8 transfer + 6 control

- **Content :** HCHO in N₂, nominal mole fraction 2 μmol mol⁻¹.
- **Source :** commercial producer of specialty calibration gases
- Type : high pressure cylinders, ~ 115 bars

Stability study in protocol

 principle: measure x(HCHO) during more than 3 months before/after shipment to calculate x at the date of measurements by participants.

Transfer standards purity analysis

FTIR analysis for HCHO and impurities

- When : during each series of measurements.
- How : Thermo Nicolet Nexus with 45m path length gas cell + IMACC software suits for quantification
- **Calibration** (for impurities)

synthetic calibration using HITRAN 2012 parameters for CO, H_2O , CO_2

calibration with dynamic standards for $({\rm HCHO})_{\rm 3}$

CCQM-K90 (2015) results

IOPSCIENCE Journals - Books Publishing Support Login - Search IOPscience cont

Metrologia

KEY COMPARISON

CCQM-K90, formaldehyde in nitrogen, 2 µmol mol⁻¹ Final report

Joële Viallon¹, Edgar Flores¹, Faraz Idrees¹, Philippe Moussay¹, Robert Ian Wielgosz¹, D Kim², Y D Kim², S Lee², S Persijn³, L A Konopelko⁴ + Show full author list Metrologia, Volume 54, Technical Supplement

+ Article information

Abstract

The CCQM-K90 comparison is designed to evaluate the level of comparability of national metrology institutes (NMI) or designated institutes (DI) measurement capabilities for formal dehyde in nitrogen at a nominal mole fraction of 2 μ mol mol⁻¹.

The comparison was organised by the BIPM using a suite of gas mixtures prepared by a producer of specialty calibration gases. The BIPM assigned the formaldehyde mole fraction in the mixtures by comparison with primary mixtures generated dynamically by permeation coupled with continuous weighing in a magnetic suspension balance. The BIPM developed two dynamic sources of formaldehyde in nitrogen that provide two independent values of the formaldehyde mole fraction: the first one based on diffusion of trioxane

https://iopscience.iop.org/article/10.1088/0026-1394/54/1A/08029

Conclusions

- Generation of dynamic standards is a valuable solution, providing a good control/measurement of the mass loss, flow rate, and **purity**
- Dynamic standards of HCHO in nitrogen 2 μmol mol⁻¹ can be generated either from paraformaldehyde or trioxane, with 0.2% relative standard uncertainty
- FTIR demonstrated good repeatability + useful tool to monitor the efficiency of dynamic sources
- Standards in high pressure cylinders showed loss of HCHO lower than expected, ~ 2 nmol mol⁻¹ month⁻¹, predictable with linear behavior

Thank you.

Bureau
International des
Poids et
Mesures

Mass loss rate analysis

Trioxane diffusion source at 5°C Low values 1900 ng min⁻¹ Slow drift Source duration > 1 year

Paraformaldehyde permeation source at 110°C Large values 7000 ng min⁻¹ Faster drift Source duration < 4 months

Transfer standard stability

HCHO loss in all standards

Loss deduced from regression line

- Loss = regression slope
- Calculated on 11 mixtures (1 empty, 2 away)
- Very consistent values
- Average -0.002 μmol mol⁻¹ month⁻¹